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Some bias

• I wrote a book on Programming 
GPUs with OpenMP
• I am Chair of the SYCL Working 

Group for The Khronos Group

I am speaking today as an 
academic based on my research
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https://doi.org/10.1109/P3HPC51967.2020.00006
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Homogeneous-heterogenenous world of Top 500
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Data: TOP500 June 2024
Updated version of chart from: Deakin, Cownie, Lin, McIntosh-Smith,
Heterogeneous Programming for the Homogeneous Majority
https://doi.org/10.1109/P3HPC56579.2022.00006
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Bristol definition of performance portability

“A code is performance portable if it can achieve a similar fraction 
of peak hardware performance on a range of different target 
architectures”.
• Needs to be a good fraction of best achievable (i.e., hand optimised).
• Range of architectures depends on your goal, but important to allow for 

future developments.
• Most interested in consistency of distribution of performance across 

systems

• Aligns with PP metric from Pennycook, et al.
From Pennycook, Sewall, Jacobsen, Deakin, McIntosh-Smith
Navigating Performance, Portability, and Productivity
https://doi.org/10.1109/MCSE.2021.3097276
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Back to the beginning of the yellow brick road
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Heterogeneous programming model 
abstractions
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Device discovery 
and control

Data location and 
movement in 

discrete memory 
spaces

Expressing 
concurrent and 

parallel work



OpenMP = OpenMP 1 + OpenMP 4/5 ( +tasks) ?
#pragma omp parallel for
for (int i = 0; i < N; ++i) {
  C[i] = A[i] + B[i];

}

#pragma omp target enter data \
map(alloc: C[:N]) \
map(to: A[:N], B[:N])

#pragma omp target
#pragma omp loop
for (int i = 0; i < N; ++i) {
  C[i] = A[i] + B[i];

}

#pragma omp target exit data \
map(from: C[:N])

Can you just write the target version and get good performance?
https://doi.org/10.1109/P3HPC56579.2022.00006 11
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Icelake MilanBabelStream

Heterogeneous Programming for the Homogeneous Majority
https://doi.org/10.1109/P3HPC56579.2022.00006
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“Then, if you don't mind, 
I'll go with you,” said the 
Lion, “for my life is simply 
unbearable without a bit 
of courage.”
from The Wonderful Wizard of Oz
by L. Frank Baum
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C++17 StdPar SYCL OpenMP target HIP/CUDA OpenCL Kokkos Julia

Code portability
Compiler/
Compiler flags

Compiler/
Compiler flags

Compiler/
Compiler flags

Not portable Runtime Compiler/
Compiler flags

Partial*
* library dependent

Device portability CPU,GPU CPU,GPU,FPGA CPU,GPU GPU (CPU via third-party 
impl.)

CPU,GPU, FPGA CPU,GPU CPU,GPU

Supported platform Intel/AMD/NVIDIA Intel/AMD/NVIDIA Intel/AMD/NVIDIA Vendor-only Intel/AMD/NVIDIA Intel/AMD/NVIDIA Intel/AMD/NVIDIA

Format Single-source Single-source Single-source Single-source Multi-source Single-source Single-source

Data movement Implicit: USM
Explicit: accessors
Implicit: USM

Explicit: pragmas
Implicit: USM

Explicit: vendor API
Implicit: USM

Explicit: buffers
Implicit: SVM

Explicit: views Explicit: library API

Traversal

std::for_each
std::for_each_n
std::transform

queue.submit([&](auto &h) {
 h.parallel_for(...);
});

# OpenMP >= 5.0
omp loop 
omp target teams distributed \
parallel for

__global__ void kernel(...) {...}
// …
kernel<<<N>>>(...)

(> 10 lines, in 
two files)

Kokkos::parallel_for
Yes*
*library dependent

Reduction

std::transform_reduce
std::reduce
std::accumulate

queue.submit([&](sycl::handler 
&h) {
 h.parallel_for(
 sycl::reduction(),...)
});

omp reduction(inscan,..) {
omp scan inclusive(...)
omp scan exclusive(...)
}

(> 10 lines,
“roll your own”)

(> 10 lines, “roll 
your own”)

Kokkos::parallel_reduce
Yes*
*library dependent

Task asynchrony/
scheduling

No control
(Ongoing proposals) Command queues

#pragma omp 
nowait/depends(...)

(Blocking by default)
Streams Command queues Futures (C++ like)

Yes*
*library dependent

Affinity No control
(Ongoing proposals) Device API

#pragma omp device(...)

(Host is also a device) Vendor API Device API Device API Yes*
*library dependent

“How/What” 
parallel

“When” 
parallel

“How” 
data access

“Where” 
parallel

From my PhD student: Wei-Chen Lin 14



ISO C++ parallel 
algorithms
on x86 CPUs

15

Lin,  Deakin, McIntosh-Smith
Evaluating ISO C++ Parallel Algorithms on Heterogeneous HPC Systems
https://doi.org/10.1109/PMBS56514.2022.00009 The University of Bristol is an Intel oneAPI Center of Excellence helped support this work. 

Architectural efficiency

https://doi.org/10.1109/PMBS56514.2022.00009


Figure from publication under review

NB: single two 
tile device

On latest GPUs from NVIDIA, AMD, and Intel, performance 
portability for BabelStream possible in most mainstream 
performance portable programming models:
• ISO C++ stdpar, OpenMP, SYCL, Kokkos
• Same performance as “native” CUDA/HIP
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FORTRAN

• We also looked at parallelism in Fortran (DO CONCURRENT)
• Lots of recent progress in this space, and more to explore.
• See Hammond, Deakin, Cownie, McIntosh-Smith, Benchmarking 

Fortran DO CONCURRENT on CPUs and GPUs Using 
BabelStream, https://doi.org/10.1109/PMBS56514.2022.00013

Same conclusion as C++ paper.
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"I shall take the heart," 
returned the Tin 
Woodman; "for brains do 
not make one happy, and 
happiness is the best 
thing in the world."

from The Wonderful Wizard of Oz
by L. Frank Baum
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“I am everywhere,” 
answered the Voice, 
“but to the eyes of 
common mortals I am 
invisible.”

from The Wonderful Wizard of Oz
by L. Frank Baum

See Doerfert, et al. Breaking the Vendor Lock: 
Performance Portable Programming through 
OpenMP as Target Independent Runtime Layer, 
https://doi.org/10.1145/3559009.3569687

https://doi.org/10.1145/3559009.3569687
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“But I do not want 
people to call me a fool, 
and if my head stays 
stuffed with straw 
instead of with brains, 
as yours is, how am I 
ever to know anything?”

from The Wonderful Wizard of Oz
by L. Frank Baum



The necessity of 
specialisation
From Pennycook, Sewall, Jacobsen, 
Deakin, McIntosh-Smith
Navigating Performance, Portability, and 
Productivity
https://doi.org/10.1109/MCSE.2021.3097
276

21

https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/MCSE.2021.3097276


The Yellow Brick Road to Productive Performance 
Portability is paved with OpenMP and SYCL
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