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Some bias

* | wrote a book on Programming
GPUs with OpenMP

* | am Chair of the SYCL Working
Group for The Khronos Group

| am speaking today as an
academic based on my research
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Abstract—With Exascale machines on our immediate horizon,
there is a pressing need for applications to be made ready to best
exploit these systems. However, there will be multiple paths to
Exascale, with each system relying on processor and accelerator
technologies from different vendors. As such, applications will
be required to be portable between these different architectures,
but it is also critical that they are efficient too. These double
requirements for portability and efficiency begets the need for
performance portability. In this study we survey the performance
portability of different programming models, including the open
standards OpenMP and SYCL, across the diverse landscape of
Exascale and pre-Exascale processors from Intel, AMD, NVIDIA,
Fujitsu, Marvell, and Amazon, together encompassing GPUs and
CPUs based on both x86 and Arm architectures. We also take
a historical view and analyse how performance portability has
changed over the last year.

Index Terms—performance portability, programming models

I. INTRODUCTION

Exascale-class supercomputers are on the immediate horizon,

-~

To further enable the development of performance-portable
programs, in this study we update and greatly expand our
earlier, wide-reaching study on performance portability [1].
We include the latest and greatest architectures, including for
the first time the Arm-based Fujitsu A64FX processor, the
NVIDIA Ampere GPU, and Intel GPUs. Thus, this study spans
the processor architecture design space of the first Exascale
machines.

As this work is an expansion and update of the 2019 study,
we are able to begin to explore the historical perspective for
how performance portability changes over time. The ecosys-
tems surrounding each of the processors have had time to
expand and mature, and therefore by refreshing many of the
results from the original study in 2019 we can track the
progress of support, performance, and performance portability.

In this update, for the first time we include results from
applications written in SYCL. The applications we include
are all open source and were ported for the purposes of this
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Bristol definition of performance portability

“A code is performance portable if it can achieve a similar fraction
of peak hardware performance on a range of different target
architectures”.
* Needs to be a good fraction of best achievable (i.e., hand optimised).
* Range of architectures depends on your goal, but important to allow for
future developments.

* Most interested in consistency of distribution of performance across
systems

* Aligns with PP metric from Pennycook, et al.

From Pennycook, Sewall, Jacobsen, Deakin, McIintosh-Smith
% University of Navigating Performance, Portability, and Productivity .
& BRIST OL https://doi.org/10.1109/MCSE.2021.3097276
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Back to the beginning of the yellow brick road
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Heterogeneous programming model
abstractions

Data location and
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OpenMP = OpenMP 1 + OpenMP 4/5 ( +tasks) ?

for (int 1 = 0; 1 < N; ++1) {
C[i] = A[1] + B[1i];
}

for (int 1 = 0; 1 < N; ++1i) {

C[i] = A[1] + B[1i];
}

Can you just write the target version and get good performance?
https://doi.org/10.1109/P3HPC56579.2022.00006
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Icelake BabelStream
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“Then, if you don't mind,
I'lLl go with you,” said the
Lion, “for my life is simply 4
unbearable without a bit £

of courage.”

from The Wonderful Wizard of Oz
by L. Frank Baum




“HOW”
data access

“How/What”
parallel

“When”
parallel

“Where”
parallel
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Code portability
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std::for_each
std::for_each_n

queue.submit([&](auto &h) {
h.parallel_for(...);

# OpenMP >= 5.0
omp loop

__global__ void kernel(...) {...}
// ...

(> 10 lines, in
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*library dependent

From my PhD student: Wei-Chen Lin
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ISO C++ parallel
algorithms
on x86 CPUs

Lin, Deakin, McIntosh-Smith
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Architectural efficiency

Evaluating ISO C++ Parallel Algorithms on Heterogeneous HPC Systems

https://doi.org/10.1109/PMBS56514.2022.00009
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On latest GPUs from NVIDIA, AMD, and Intel, performance
portability for BabelStream possible in most mainstream
performance portable programming models:

* |ISO C++ stdpar, OpenMP, SYCL, Kokkos

« Same performance as “native” CUDA/HIP
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FORTRAN

* We also looked at parallelism in Fortran (DO CONCURRENT)
* Lots of recent progress in this space, and more to explore.

* See Hammond, Deakin, Cownie, Mclntosh-Smith, Benchmarking
Fortran DO CONCURRENT on CPUs and GPUs Using
BabelStream, https://doi.org/10.1109/PMBS56514.2022.00013

Same conclusion as C++ paper.
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"| shall take the heart,"
returned the Tin
Woodman; "for brains do
not make one happy, and
happiness is the best
thing in the world."

from The Wonderful Wizard of Oz
« by L. Frank Baum
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“I am everywhere,”
answered the Voice,
“but to the eyes of
common mortals | am
Invisible.”

from The Wonderful Wizard of Oz
by L. Frank Baum

See Doerfert, et al. Breaking the Vendor Lock:
Performance Portable Programming through
OpenMP as Target Independent Runtime Layer,
https://doi.org/10.1145/3559009.3569687
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“But | do not want

people to call me a fool,
_ ¥ andif my head stays

| § stuffed with straw

e Instead of with brains,

e | = asyoursis, howam|

ever to know anything?”

from The Wonderful Wizard of Oz
by L. Frank Baum
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Can always construct
the PP=1, CC=0 by
combining the best
codes for each
platform into an
application

Rising PP results from performance
increasing in one more more platforms.
Broad or narrowly-focused
optimizations cause this.

Everyone wants to be
here: single source, best
performance everywhere
But not realistic.

The necessity of
specialisation

From Pennycook, Sewall, Jacobsen,
Deakin, Mclntosh-Smith

Navigating Performance, Portability, and
Productivity

https://doi.org/10.1109/MCSE.2021.3097
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Falling CC indicates
that platform-specific
code is being added,
or common code is
being removed. This
is commonly found
as codes are

04 - specialized.

0.2 5

Being on the PP = 0 axis
is anomalous, since at
least one platform is
failing

0.0

Specialization
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Removing specialization
or adding common code
increases convergence;
this is typical of
introducing more and
higher-level abstractions.

Falling PP is rarely intentional.
New features in applications may
cause performance to drop in one

or more platforms.

|
0.0 0.2

Code Convergence (1- Code Divergence)

|
0.4

| |
0.6 0.8 1.0
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