€3
-K

Overview of open platform
programming methods for
exascale computing

Dr Tom Deakin
University of Bristol

Monday, June 24t 2024

35 STOL

Some bias

* | wrote a book on Programming
GPUs with OpenMP

* | am Chair of the SYCL Working
Group for The Khronos Group

| am speaking today as an
academic based on my research

{ PROGRAMMING
/' {/ YOUR GPU WITH
/[) OPENMP

* Performance Portability for GPUs
Tom Deakin and Timothy G. Mattson

h

2020 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)

Tracking Performance Portability on the Yellow
Brick Road to Exascale

Tom Deakin*, Andrei Poenaru®, Tom Lin* and Simon McIntosh-Smith*
*Department of Computer Science, University of Bristol, UK
Email: {tom.deakin, andrei.poenaru, s.mcintosh-smith} @bristol.ac.uk

Abstract—With Exascale machines on our immediate horizon,
there is a pressing need for applications to be made ready to best
exploit these systems. However, there will be multiple paths to
Exascale, with each system relying on processor and accelerator
technologies from different vendors. As such, applications will
be required to be portable between these different architectures,
but it is also critical that they are efficient too. These double
requirements for portability and efficiency begets the need for
performance portability. In this study we survey the performance
portability of different programming models, including the open
standards OpenMP and SYCL, across the diverse landscape of
Exascale and pre-Exascale processors from Intel, AMD, NVIDIA,
Fujitsu, Marvell, and Amazon, together encompassing GPUs and
CPUs based on both x86 and Arm architectures. We also take
a historical view and analyse how performance portability has
changed over the last year.

Index Terms—performance portability, programming models

I. INTRODUCTION

Exascale-class supercomputers are on the immediate horizon,

-~

To further enable the development of performance-portable
programs, in this study we update and greatly expand our
earlier, wide-reaching study on performance portability [1].
We include the latest and greatest architectures, including for
the first time the Arm-based Fujitsu A64FX processor, the
NVIDIA Ampere GPU, and Intel GPUs. Thus, this study spans
the processor architecture design space of the first Exascale
machines.

As this work is an expansion and update of the 2019 study,
we are able to begin to explore the historical perspective for
how performance portability changes over time. The ecosys-
tems surrounding each of the processors have had time to
expand and mature, and therefore by refreshing many of the
results from the original study in 2019 we can track the
progress of support, performance, and performance portability.

In this update, for the first time we include results from
applications written in SYCL. The applications we include
are all open source and were ported for the purposes of this

etmdv thne renrecentino a contrihntion ta the commnnitv in

https://doi.org/10.1109/P3HPC51967.2020.00006

https://doi.org/10.1109/P3HPC51967.2020.00006

Homogeneous-heterogenenous world of Top 500

Accelerators [Host] Processor Technology

D &
O @

m None s AMD = NVIDIA mintel = Other
m AMD Zen 2-4 m Arm m Intel (8 generations) m Power m Other
Data: TOP500 June 2024
Updated version of chart from: Deakin, Cownie, Lin, Mclntosh-Smith,

Heterogeneous Programming for the Homogeneous Majority 6
https://doi.org/10.1109/P3HPC56579.2022.00006

https://doi.org/10.1109/P3HPC56579.2022.00006

Bristol definition of performance portability

“A code is performance portable if it can achieve a similar fraction
of peak hardware performance on a range of different target
architectures”.
* Needs to be a good fraction of best achievable (i.e., hand optimised).
* Range of architectures depends on your goal, but important to allow for
future developments.

* Most interested in consistency of distribution of performance across
systems

* Aligns with PP metric from Pennycook, et al.

From Pennycook, Sewall, Jacobsen, Deakin, McIintosh-Smith
% University of Navigating Performance, Portability, and Productivity .
& BRIST OL https://doi.org/10.1109/MCSE.2021.3097276

—

f

https://doi.org/10.1109/MCSE.2021.3097276

Back to the beginning of the yellow brick road

BabelStream Triad array size=2%*25

Cascade Lake
Skylake | X |
Knights Landing 100
Rome
Power 9 X X "
ThunderX?2 X
Graviton 2 X X
A64FX X X 60
P100
V100 .
A100
Turing
Radeon VII -X 20
MI50
IrisPro Gen9 X X |
pebflfp Kkog Penq 0004 Cz

https://doi.org/10.1109/P3HPC51967.2020.00006

Heterogeneous programming model
abstractions

Data location and

: : : Expressin
Device discovery movement in b &

concurrent and
parallel work

and control discrete memory
spaces

10

OpenMP = OpenMP 1 + OpenMP 4/5 (+tasks) ?

for (int 1 = 0; 1 < N; ++1) {
C[i] = A[1] + B[1i];
}

for (int 1 = 0; 1 < N; ++1i) {

C[i] = A[1] + B[1i];
}

Can you just write the target version and get good performance?
https://doi.org/10.1109/P3HPC56579.2022.00006

11

Icelake BabelStream

—@®— OpenMP —%— Kokkos
—p— OpenMP Target —4€@p— SYCL

—_
o
|

+
x

o
(@))
1

Application Efficiency
o
S

o
N
]

o
o

1 3 0 2o

3 2 0 1}

3 1 2 o}

o3 2 1 L 3
1 2 3 4

of Compilers

0] Cray GCC LIVM

Intel

Heterogeneous Programming for the Homogeneous Majority
https://doi.org/10.1109/P3HPC56579.2022.00006

Application Efficiency

Milan
—@®— OpenMP —#%— Kokkos
—p— OpenMP Target —€@p— SYCL
1.0 A
0.8 - ;K“4
0.6 1
0.4 1
0.2 -
0.0
2 3 1 0 [—
P> 3 1 2 ol
0 1 2 30
o3 2 4 L 2
1 2 3 4
of Compilers
0| Cray GCC El Intel
AMD LILVM

12

https://doi.org/10.1109/P3HPC56579.2022.00006

“Then, if you don't mind,
I'lLl go with you,” said the
Lion, “for my life is simply 4
unbearable without a bit £

of courage.”

from The Wonderful Wizard of Oz
by L. Frank Baum

“HOW”
data access

“How/What”
parallel

“When”
parallel

“Where”
parallel

<

<

<

N\

Y4

Code portability

C++17 StdPar SYCL OpenMP target HIP/CUDA OpenCL Kokkos Julia
7 A 4 o oo
C: Grer. | OpenMP |AMDZV openCL | Ckokkos | julia
Compiler/ Compiler/ Compiler/ Not portable Runtime Compiler/ Partial*

Compiler flags

Compiler flags

Compiler flags

Compiler flags

* library dependent

Device portability

CPU,GPU

CPU,GPU,FPGA

CPU,GPU

GPU (CPU via third-party
impl.)

CPU,GPU, FPGA

CPU,GPU

CPU,GPU

Supported platform

Intel/AMD/NVIDIA

Intel/AMD/NVIDIA

Intel/AMD/NVIDIA

Vendor-only

Intel/AMD/NVIDIA

Intel/AMD/NVIDIA

Intel/AMD/NVIDIA

Format

Single-source

Single-source

Single-source

Single-source

Multi-source

Single-source

Single-source

Data movement

Implicit: USM

Explicit: accessors
Implicit: USM

Explicit: pragmas
Implicit: USM

Explicit: vendor API
Implicit: USM

Explicit: buffers
Implicit: SVM

Explicit: views

Explicit: library API

std::for_each
std::for_each_n

queue.submit([&](auto &h) {
h.parallel_for(...);

OpenMP >= 5.0
omp loop

__global__ void kernel(...) {...}
// ...

(> 10 lines, in

Kokkos::parallel_for

Yes*

Traversal . i omp target teams distributed \ . *|ibrary dependent
std:transform ol e EERS NS two files) Yoo
std::transform_reduce queue.submit([&](sycl:handler | omp reduction(inscan,..) { Kokkos::parallel_reduce
std:reduce &h) { omp scan inclusive(...) (> 10 lines (> 10 lines. “roll Yes*

Reduction | std::accumulate h.parallel_for(omp scan exclusive(...) o o o *library dependent
sycl:reduction(),... } roll your own”) your own”)
i
#pragma omp
nowait/depends(...) *
Task asynchrony/ | No control P : Y?S
. . Command queues . Streams Command queues Futures (C++ like) *library dependent
scheduling J| (Ongoing proposals) (Blocking by default)
#pragma omp device(...)
. . *
Affinity | o contre! Device API (Host s also a device) Vendor API Device API Device API ves

(Ongoing proposals)

*library dependent

From my PhD student: Wei-Chen Lin

14

ISO C++ parallel
algorithms
on x86 CPUs

Lin, Deakin, McIntosh-Smith

Add Copy Dot Triad Mul Add Copy ©

Dot Triad Mul

Architectural efficiency

Evaluating ISO C++ Parallel Algorithms on Heterogeneous HPC Systems

https://doi.org/10.1109/PMBS56514.2022.00009

The University of Bristol is an Intel oneAPI Center of Excellence helped support this work.

100
8 44 39 39
1 47 41 45
45 38 44
ad 45 42 a4
ad 50 46 51
36 31 38
38 33 42
38 30 37
39 33 40
47 37 44
] 1 | 1
b 2 o g
= o| 5 a
Q «Q
* *

20 40 60 80
33 35/ 54 54
36 3
34 53 52
36 0
42 44 N6
54 54
32 59 59
52 52 54 52 52 52 |4 31 31 52 i 52
50 59 59 59 59 59 34 E 59 59
83 82 83 80 82 81 EEKIETINNECYENES S 5 33 B
Q g E Q g g Q 8 Q & E Q g E
g8 5 O § 9 g o) g 9
q 5 | 4 9 | 4 A s /4 3
TBB - -
OpenMP Kokkos C++17 C++17
(data) (index)

C++17 C++17
(data) (index)
oneDPL oneDPL
w/OMP w/OMP

15

8EEY UOBY

€1LL OAdH

https://doi.org/10.1109/PMBS56514.2022.00009

H100 MI100 PVC1550
K,
s100 o L o _ o]] |
21001 = 2 2 3 9 I - . NB: single two
© 9(Q - 8 & o o & o | g 8 @ S tile device
® & ® 2 o
897 ' 5 2 8 3 3§
70 A . g & I I 3

60 A
50 -
40 A
30 A
20 -
10 A

Bandwidth (% of theoretica

B
S

On latest GPUs from NVIDIA, AMD, and Intel, performance
portability for BabelStream possible in most mainstream
performance portable programming models:

* |ISO C++ stdpar, OpenMP, SYCL, Kokkos

« Same performance as “native” CUDA/HIP

16
Figure from publication under review

FORTRAN

* We also looked at parallelism in Fortran (DO CONCURRENT)
* Lots of recent progress in this space, and more to explore.

* See Hammond, Deakin, Cownie, Mclntosh-Smith, Benchmarking
Fortran DO CONCURRENT on CPUs and GPUs Using
BabelStream, https://doi.org/10.1109/PMBS56514.2022.00013

Same conclusion as C++ paper.

17

Fofton
W
o
>
z
B]

& e
g

"| shall take the heart,"
returned the Tin
Woodman; "for brains do
not make one happy, and
happiness is the best
thing in the world."

from The Wonderful Wizard of Oz
« by L. Frank Baum

18

“I am everywhere,”
answered the Voice,
“but to the eyes of
common mortals | am
Invisible.”

from The Wonderful Wizard of Oz
by L. Frank Baum

See Doerfert, et al. Breaking the Vendor Lock:
Performance Portable Programming through
OpenMP as Target Independent Runtime Layer,
https://doi.org/10.1145/3559009.3569687

19

https://doi.org/10.1145/3559009.3569687

“But | do not want

people to call me a fool,
_ ¥ andif my head stays

| § stuffed with straw

e Instead of with brains,

e | = asyoursis, howam|

ever to know anything?”

from The Wonderful Wizard of Oz
by L. Frank Baum

20

1.0 @

Can always construct
the PP=1, CC=0 by
combining the best
codes for each
platform into an
application

Rising PP results from performance
increasing in one more more platforms.
Broad or narrowly-focused
optimizations cause this.

Everyone wants to be
here: single source, best
performance everywhere
But not realistic.

The necessity of
specialisation

From Pennycook, Sewall, Jacobsen,
Deakin, Mclntosh-Smith

Navigating Performance, Portability, and
Productivity

https://doi.org/10.1109/MCSE.2021.3097

276

0.8 -

0.6 -

Falling CC indicates
that platform-specific
code is being added,
or common code is
being removed. This
is commonly found
as codes are

04 - specialized.

0.2 5

Being on the PP = 0 axis
is anomalous, since at
least one platform is
failing

0.0

Specialization

uoneziundQ

od

UOISSAI

Removing specialization
or adding common code
increases convergence;
this is typical of
introducing more and
higher-level abstractions.

Falling PP is rarely intentional.
New features in applications may
cause performance to drop in one

or more platforms.

|
0.0 0.2

Code Convergence (1- Code Divergence)

|
0.4

| |
0.6 0.8 1.0

21

https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/MCSE.2021.3097276

—

-

XX T {”‘
|
P

Th \\\\Y‘\él\l‘/ ' 5-— - r | P f a 'f.."
m/ 6\ O - 4 ~ g mr\n;—xI,‘ S e er ‘r, | Ce
14

{)

/ o - ! \
P rt I l I 1 S=f= \V/~Ya B INT) [\ aVYa) 485 n Y I P ,.
! Yot N d --v‘ - Av-.‘ > 'A']l‘ _'(-‘;.;. {
\
- :

: i 4

A

XY
o R i o ot
N e Lol

s

",

Bioohpmm Ormetiif RnRtoran.
Jroograaioiut Alowd \‘\QW\

'Golo the Qracis Singlatovcomoery |
Progremwnyg Citl PUL HO’GOFDWG Promm:\m\\g

Related performance portability papers

Tuomas, Christidi, Giordano, Dubrovska, Quinn, Maynard,
Case, Olgu, and Deakin. “Principles for Automated and
Reproducible Benchmarking.” In First International Workshop
on HPC Testing and Evaluation of Systems, Tools, and
Software. IEEE, 2023.
https://doi.org/10.1145/3624062.3624133

Deakin, T, James C, Lin, W.C., and MclIntosh-Smith, S.
“Heterogeneous Programming for the Homogeneous
Majority.” In International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 2022.
https://doi.org/10.1109/P3HPC56579.2022.00006

Hammond, J.R., Deakin, T, Cownie, J. and Mclntosh-Smith, S.
“Benchmarking Fortran DO CONCURRENT on CPUs and
GPUs Using BabelStream.” In International Workshop on
Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), 2022.
https://doi.org/10.1109/PMBS56514.2022.00013

Lin, W.C, Deakin T, and MclIntosh-Smith S. “Evaluating ISO
C++ Parallel Algorithms on Heterogeneous HPC Systems.” In
International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance
Computer Systems (PMBS), 2022.
https://doi.org/10.1109/PMBS56514.2022.00009

Deakin, T and Mcintosh-Smith S. “Evaluating the
Performance of HPC-Style SYCL Applications.” In
International Workshop on OpenCL and SYCLCon
(IWOCL/SYCLCon). ACM, 2020.
https://doi.org/10.1145/3388333.3388643

Pennycook, S. J., Sewall, J. D., Jacobsen, D. W., Deakin,T and
Mclntosh-Smith, S. “Navigating Performance, Portability and
Productivity.” Computing in Science and Engineering, 2021.
https://doi.org/10.1109/MCSE.2021.3097276

Deakin, T., Poenaru, A., Lin, T., and MclIntosh-Smith, A.,
“Tracking Performance Portability on the Yellow Brick Road to
Exascale.:, In International Workshop on Performance
Portability and Productivity in HPC (P3HPC), 2020.
https://doi.org/10.1109/P3HPC51967.2020.00006

https://hpc.tomdeakin.com

tom.deakin@bristol.ac.uk

23

https://doi.org/10.1145/3624062.3624133
https://doi.org/10.1109/P3HPC56579.2022.00006
https://doi.org/10.1109/PMBS56514.2022.00013
https://doi.org/10.1109/PMBS56514.2022.00009
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/P3HPC51967.2020.00006
https://hpc.tomdeakin.com/
mailto:Tom.deakin@bristol.ac.uk

