
Overview of open platform 
programming methods for 

exascale computing
Dr Tom Deakin

University of Bristol

Monday, June 24th 2024

1



Some bias

• I wrote a book on Programming 
GPUs with OpenMP
• I am Chair of the SYCL Working 

Group for The Khronos Group

I am speaking today as an 
academic based on my research

2



3



https://doi.org/10.1109/P3HPC51967.2020.00006
4

https://doi.org/10.1109/P3HPC51967.2020.00006


5



Homogeneous-heterogenenous world of Top 500

156

16308

6

14

[Host] Processor Technology

AMD Zen 2-4 Arm Intel (8 generations) Power Other

6

307

14

171

5 3

Accelerators

None AMD NVIDIA Intel Other

Data: TOP500 June 2024
Updated version of chart from: Deakin, Cownie, Lin, McIntosh-Smith,
Heterogeneous Programming for the Homogeneous Majority
https://doi.org/10.1109/P3HPC56579.2022.00006

https://doi.org/10.1109/P3HPC56579.2022.00006


7



Bristol definition of performance portability

“A code is performance portable if it can achieve a similar fraction 
of peak hardware performance on a range of different target 
architectures”.
• Needs to be a good fraction of best achievable (i.e., hand optimised).
• Range of architectures depends on your goal, but important to allow for 

future developments.
• Most interested in consistency of distribution of performance across 

systems

• Aligns with PP metric from Pennycook, et al.
From Pennycook, Sewall, Jacobsen, Deakin, McIntosh-Smith
Navigating Performance, Portability, and Productivity
https://doi.org/10.1109/MCSE.2021.3097276

8

https://doi.org/10.1109/MCSE.2021.3097276


Back to the beginning of the yellow brick road

9

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100
A100

Turing
Radeon VII

MI50
IrisPro Gen9

72%
83%
91%
74%
66%
80%
84%
79%
75%
88%
75%
87%
49%
71%
79%

58%
70%
64%

118%
71%
79%
82%
58%
76%
92%
86%
90%
78%
69%

X

24%
28%
66%
40%
47%

X
X
X

75%
92%
88%
90%
10%
9%
X

X
X
X
X
X
X
X
X

75%
93%
88%
90%

X
X
X

35%
44%
59%
16%

X
32%

X
X

75%
X

87%
90%
82%
76%
80%

36%
43%
54%
70%
59%
75%
26%
14%
72%
86%
87%
86%
81%

E
80%

BabelStream Triad array size=2**25

20

40

60

80

100

https://doi.org/10.1109/P3HPC51967.2020.00006



Heterogeneous programming model 
abstractions

10

Device discovery 
and control

Data location and 
movement in 

discrete memory 
spaces

Expressing 
concurrent and 

parallel work



OpenMP = OpenMP 1 + OpenMP 4/5 ( +tasks) ?
#pragma omp parallel for
for (int i = 0; i < N; ++i) {
  C[i] = A[i] + B[i];

}

#pragma omp target enter data \
map(alloc: C[:N]) \
map(to: A[:N], B[:N])

#pragma omp target
#pragma omp loop
for (int i = 0; i < N; ++i) {
  C[i] = A[i] + B[i];

}

#pragma omp target exit data \
map(from: C[:N])

Can you just write the target version and get good performance?
https://doi.org/10.1109/P3HPC56579.2022.00006 11



12

Icelake MilanBabelStream

Heterogeneous Programming for the Homogeneous Majority
https://doi.org/10.1109/P3HPC56579.2022.00006

https://doi.org/10.1109/P3HPC56579.2022.00006


“Then, if you don't mind, 
I'll go with you,” said the 
Lion, “for my life is simply 
unbearable without a bit 
of courage.”
from The Wonderful Wizard of Oz
by L. Frank Baum

13



C++17 StdPar SYCL OpenMP target HIP/CUDA OpenCL Kokkos Julia

Code portability
Compiler/
Compiler flags

Compiler/
Compiler flags

Compiler/
Compiler flags

Not portable Runtime Compiler/
Compiler flags

Partial*
* library dependent

Device portability CPU,GPU CPU,GPU,FPGA CPU,GPU GPU (CPU via third-party 
impl.)

CPU,GPU, FPGA CPU,GPU CPU,GPU

Supported platform Intel/AMD/NVIDIA Intel/AMD/NVIDIA Intel/AMD/NVIDIA Vendor-only Intel/AMD/NVIDIA Intel/AMD/NVIDIA Intel/AMD/NVIDIA

Format Single-source Single-source Single-source Single-source Multi-source Single-source Single-source

Data movement Implicit: USM
Explicit: accessors
Implicit: USM

Explicit: pragmas
Implicit: USM

Explicit: vendor API
Implicit: USM

Explicit: buffers
Implicit: SVM

Explicit: views Explicit: library API

Traversal

std::for_each
std::for_each_n
std::transform

queue.submit([&](auto &h) {
 h.parallel_for(...);
});

# OpenMP >= 5.0
omp loop 
omp target teams distributed \
parallel for

__global__ void kernel(...) {...}
// …
kernel<<<N>>>(...)

(> 10 lines, in 
two files)

Kokkos::parallel_for
Yes*
*library dependent

Reduction

std::transform_reduce
std::reduce
std::accumulate

queue.submit([&](sycl::handler 
&h) {
 h.parallel_for(
 sycl::reduction(),...)
});

omp reduction(inscan,..) {
omp scan inclusive(...)
omp scan exclusive(...)
}

(> 10 lines,
“roll your own”)

(> 10 lines, “roll 
your own”)

Kokkos::parallel_reduce
Yes*
*library dependent

Task asynchrony/
scheduling

No control
(Ongoing proposals) Command queues

#pragma omp 
nowait/depends(...)

(Blocking by default)
Streams Command queues Futures (C++ like)

Yes*
*library dependent

Affinity No control
(Ongoing proposals) Device API

#pragma omp device(...)

(Host is also a device) Vendor API Device API Device API Yes*
*library dependent

“How/What” 
parallel

“When” 
parallel

“How” 
data access

“Where” 
parallel

From my PhD student: Wei-Chen Lin 14



ISO C++ parallel 
algorithms
on x86 CPUs

15

Lin,  Deakin, McIntosh-Smith
Evaluating ISO C++ Parallel Algorithms on Heterogeneous HPC Systems
https://doi.org/10.1109/PMBS56514.2022.00009 The University of Bristol is an Intel oneAPI Center of Excellence helped support this work. 

Architectural efficiency

https://doi.org/10.1109/PMBS56514.2022.00009


Figure from publication under review

NB: single two 
tile device

On latest GPUs from NVIDIA, AMD, and Intel, performance 
portability for BabelStream possible in most mainstream 
performance portable programming models:
• ISO C++ stdpar, OpenMP, SYCL, Kokkos
• Same performance as “native” CUDA/HIP

16



FORTRAN

• We also looked at parallelism in Fortran (DO CONCURRENT)
• Lots of recent progress in this space, and more to explore.
• See Hammond, Deakin, Cownie, McIntosh-Smith, Benchmarking 

Fortran DO CONCURRENT on CPUs and GPUs Using 
BabelStream, https://doi.org/10.1109/PMBS56514.2022.00013

Same conclusion as C++ paper.

17



"I shall take the heart," 
returned the Tin 
Woodman; "for brains do 
not make one happy, and 
happiness is the best 
thing in the world."

from The Wonderful Wizard of Oz
by L. Frank Baum

18



19

“I am everywhere,” 
answered the Voice, 
“but to the eyes of 
common mortals I am 
invisible.”

from The Wonderful Wizard of Oz
by L. Frank Baum

See Doerfert, et al. Breaking the Vendor Lock: 
Performance Portable Programming through 
OpenMP as Target Independent Runtime Layer, 
https://doi.org/10.1145/3559009.3569687

https://doi.org/10.1145/3559009.3569687


20

“But I do not want 
people to call me a fool, 
and if my head stays 
stuffed with straw 
instead of with brains, 
as yours is, how am I 
ever to know anything?”

from The Wonderful Wizard of Oz
by L. Frank Baum



The necessity of 
specialisation
From Pennycook, Sewall, Jacobsen, 
Deakin, McIntosh-Smith
Navigating Performance, Portability, and 
Productivity
https://doi.org/10.1109/MCSE.2021.3097
276

21

https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/MCSE.2021.3097276


The Yellow Brick Road to Productive Performance 
Portability is paved with OpenMP and SYCL

22



Related performance portability papers
Tuomas, Christidi, Giordano, Dubrovska, Quinn, Maynard, 
Case, Olgu, and Deakin. “Principles for Automated and 
Reproducible Benchmarking.” In First International Workshop 
on HPC Testing and Evaluation of Systems, Tools, and 
Software. IEEE, 2023. 
https://doi.org/10.1145/3624062.3624133

Deakin, T, James C, Lin, W.C., and McIntosh-Smith, S. 
“Heterogeneous Programming for the Homogeneous 
Majority.” In International Workshop on Performance, 
Portability and Productivity in HPC (P3HPC), 2022. 
https://doi.org/10.1109/P3HPC56579.2022.00006

Hammond, J.R., Deakin, T, Cownie, J. and McIntosh-Smith, S. 
“Benchmarking Fortran DO CONCURRENT on CPUs and 
GPUs Using BabelStream.” In International Workshop on 
Performance Modeling, Benchmarking and Simulation of 
High Performance Computer Systems (PMBS), 2022. 
https://doi.org/10.1109/PMBS56514.2022.00013

Lin, W.C, Deakin T, and McIntosh-Smith S. “Evaluating ISO 
C++ Parallel Algorithms on Heterogeneous HPC Systems.” In 
International Workshop on Performance Modeling, 
Benchmarking and Simulation of High Performance 
Computer Systems (PMBS), 2022. 
https://doi.org/10.1109/PMBS56514.2022.00009

Deakin, T and McIntosh-Smith S. “Evaluating the 
Performance of HPC-Style SYCL Applications.” In 
International Workshop on OpenCL and SYCLCon 
(IWOCL/SYCLCon). ACM, 2020. 
https://doi.org/10.1145/3388333.3388643

Pennycook, S. J., Sewall, J. D., Jacobsen, D. W., Deakin,T and 
McIntosh-Smith, S. “Navigating Performance, Portability and 
Productivity.” Computing in Science and Engineering, 2021. 
https://doi.org/10.1109/MCSE.2021.3097276

Deakin, T., Poenaru, A., Lin, T., and McIntosh-Smith, A., 
“Tracking Performance Portability on the Yellow Brick Road to 
Exascale.:, In International Workshop on Performance 
Portability and Productivity in HPC (P3HPC), 2020.
https://doi.org/10.1109/P3HPC51967.2020.00006

https://hpc.tomdeakin.com
tom.deakin@bristol.ac.uk 23

https://doi.org/10.1145/3624062.3624133
https://doi.org/10.1109/P3HPC56579.2022.00006
https://doi.org/10.1109/PMBS56514.2022.00013
https://doi.org/10.1109/PMBS56514.2022.00009
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/P3HPC51967.2020.00006
https://hpc.tomdeakin.com/
mailto:Tom.deakin@bristol.ac.uk

